Modalities in homotopy type theory
نویسندگان
چکیده
Univalent homotopy type theory (HoTT) may be seen as a language for the category of ∞-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a “localization” higher inductive type. This produces in particular the (n-connected, n-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions.
منابع مشابه
Lawvere-Tierney sheafification in Homotopy Type Theory
The main goal of this thesis is to define an extension of Gödel not-not translation to all truncated types, in the setting of homotopy type theory. This goal will use some existing theories, like Lawvere-Tierney sheaves theory in toposes, we will adapt in the setting of homotopy type theory. In particular, we will define a Lawvere-Tierney sheafification functor, which is the main theorem presen...
متن کاملThe Seifert–van Kampen Theorem in Homotopy
Homotopy type theory is a recent research area connecting type theory with homotopy theory by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic analogues of homotopy-theoretic theorems, yielding “synthetic homotopy theory”. Here we consider the Seifert–van Kampen theorem, which characterizes the loop structure of spaces obtained by gluing. This is useful in...
متن کاملThe Seifert-van Kampen Theorem in Homotopy Type Theory
Homotopy type theory is a recent research area connecting type theory with homotopy theory by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic analogues of homotopy-theoretic theorems, yielding “synthetic homotopy theory”. Here we consider the Seifert–van Kampen theorem, which characterizes the loop structure of spaces obtained by gluing. This is useful in...
متن کاملSynthetic Homology in Homotopy Type Theory
This paper defines homology in homotopy type theory, in the process stable homotopy groups are also defined. Previous research in synthetic homotopy theory is relied on, in particular the definition of cohomology. This work lays the foundation for a computer checked construction of homology.
متن کاملHomotopy limits in type theory
Working in homotopy type theory, we provide a systematic study of homotopy limits of diagrams over graphs, formalized in the Coq proof assistant. We discuss some of the challenges posed by this approach to formalizing homotopy-theoretic material. We also compare our constructions with the more classical approach to homotopy limits via fibration categories.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.07526 شماره
صفحات -
تاریخ انتشار 2017